Action of a Frobenius-like group

İsmail Ş. Güloğlu^{*,a}, Gülin Ercan^b

^aDepartment of Mathematics, Doğuş University, Istanbul, Turkey ^bDepartment of Mathematics, Middle East Technical University, Ankara, Turkey * Corresponding author

Abstract

We call a finite group Frobenius-like if it has a nontrivial nilpotent normal subgroup F possessing a nontrivial complement H such that [F, h] = F for all nonidentity elements $h \in H$. We prove that any irreducible nontrivial FHmodule for a Frobenius-like group FH of odd order over an algebraically closed field has an H-regular direct summand if either F is fixed point free on V or Facts nontrivially on V and the characteristic of the field is coprime to the order of F. Some consequences of this result are also derived.

Keywords: Frobenius action, automorphisms, fixed points. 2010 MSC: 20D10, 20D15, 20D45

Theorem A. Let $G \triangleleft GA$ such that A normalizes a Sylow system of G. Suppose that $G' \neq G$ and [G, a] = G for all nonidentity elements $a \in A$. Let V be a nonzero vector space over an algebraically closed field k and let GA act on V as a group of linear transformations such that char(k) does not divide the order of A. Then V_A has a proper A-regular direct summand if one of the following holds:

 $(i) C_V(G) = 0,$

(ii) $[V,G] \neq 0$ and char(k) does not divide the order of G.

The proof of this theorem relies on the following result which can be regarded

Preprint submitted to Journal of LATEX Templates

 $Email\ addresses:\ iguloglu@dogus.edu.tr\ (İsmail Ş. Güloğlu*,a), ercan@metu.edu.tr\ (Gülin\ Ercan^b)$

as a generalization of [2], V.17.13], and is of independent interest too.

Theorem B. Let H be a group in which each Sylow subgroup is cyclic. Assume that H/F(H) is not a nontrivial 2-group. Let P be an extraspecial group of order p^{2m+1} for some prime p not dividing |H|. Suppose that H acts on P in such a way that H centralizes Z(P), and [P,h] = P for any nonidentity element $h \in H$. Let k be an algebraically closed field of characteristic not dividing the order of G = PH and let V be a kG-module on which Z(P) acts nontrivially and P acts irreducibly. Let χ be the character of G afforded by V. Then |H| divides $p^m - \delta$ and $\chi_H = \frac{p^m - \delta}{|H|} \rho + \delta \mu$ where ρ is the regular character of H, μ is a linear character of H and $\delta \in \{-1, 1\}$. In particular, V_H contains the regular kH-module as a direct summand if G is of odd order.

It should be noted that if G is not of odd order, then the module V_H need not to contain the regular kH-module.

We want to draw the attention of the reader to Theorem 3.2 and Theorem 3.4 in the remarkable paper [8] of Turull which are very close to Theorem B and Theorem A respectively.

As applications of Theorem A and Theorem B we obtain the following:

Corollary C. Let G be a finite solvable group acted on coprimely by a Frobenius-like group FH of odd order so that $[G, F] \neq 1$. Then $C_G(H) \neq 1$.

Corollary D. Let P be a p-group acted on coprimely by a Frobenius-like group FH of odd order so that [P, F] = P. Then

(i) the nilpotency class of P is at most $2log_n|C_P(H)|$,

(ii) |P| is bounded in terms of |F| and $|C_P(H)|$,

(iii) the rank of P is bounded in terms of |F| and the rank of $C_P(H)$.

In the present paper all groups are assumed to be finite. The notation and terminology are standard, and the rank of a finite group is the minimum number r such that every subgroup is generated by r elements.

1. Existence of regular modules

In this section we prove a technical result pertaining to the main result of this paper, which can be regarded as a generalization of [2, V.17.13]. We begin with a preliminary lemma.

Lemma 1.1. Let FH be a group with $F \triangleleft FH$, $F' \neq F$ and [F,h] = F for all nonidentity elements $h \in H$. Assume that all Sylow subgroups of H are cyclic. Then

(i) the groups H' and H/H' are cyclic of coprime orders,
(ii) H = H'⟨y⟩ = H₀⟨y⟩ with H' ∩ ⟨y⟩ = 1 for some y ∈ H where H₀ denotes the Fitting subgroup of H, and H₀ = H' × C_{⟨y⟩}(H') is cyclic,
(iii) π(H₀) = π(H).

Proof. The group FH/F' is Frobenius with Frobenius complement isomorphic to H. Then (i) follows by [[3], Theorem 5.16]. In particular, $H = H'\langle y \rangle$ for some $y \in H$ with $H' \cap \langle y \rangle = 1$. On the other hand the group H has a unique subgroup of order p for each prime p dividing its order by the argument applied in the proof of Theorem 6.19 in [3] which relies on [[3], Theorem 6.9]. Hence $\pi(H_0) = \pi(H)$ as claimed in (*iii*). Let now H_0 denote the Fitting subgroup of H. Then $H_0 = H'(H_0 \cap \langle y \rangle)$ and $[H_0 \cap \langle y \rangle, H'] = 1$, that is, $H_0 \cap \langle y \rangle \subseteq C_{\langle y \rangle}(H') \subseteq H_0$. This establishes the claim (*ii*). \Box

Theorem B. Let H be a group in which each Sylow subgroup is cyclic. Assume that H/F(H) is not a nontrivial 2-group. Let P be an extraspecial group of order p^{2m+1} for some prime p not dividing |H|. Suppose that H acts on P in such a way that H centralizes Z(P), and [P,h] = P for any nonidentity element $h \in H$. Let k be an algebraically closed field of characteristic not dividing the order of G = PH and let V be a kG-module on which Z(P) acts nontrivially and P acts irreducibly. Let χ be the character of G afforded by V. Then |H|divides $p^m - \delta$ and $\chi_H = \frac{p^m - \delta}{|H|} \rho + \delta \mu$ where ρ is the regular character of H, μ is a linear character of H and $\delta \in \{-1, 1\}$. In particular, V_H contains the regular kH-module as a direct summand if G is of odd order. **Proof.** Since all Sylow subgroups of H are cyclic and G/Z(P) is a Frobenius group with a complement isomorphic to H, we see that H has the properties described in Lemma 2.1. By [[2], V.17.13] we can assume that H is not nilpotent and recall that H/F(H) is not a 2-group by hypothesis.

Note that $dimV = p^m$ as χ_P is a faithful irreducible character of P. Let D be the representation of G afforded by the module V and let M be the k-space of square matrices of size p^m over k. We define a left kH-module structure on M by letting

$$h \cdot X := D(h)XD(h^{-1})$$
, for any $X \in M$ and for any $h \in H$.

It is known that H acts on $Hom_k(V, V)$ via the multiplication $(h \cdot T)(v) = hT(h^{-1}v)$ for any $h \in H$, $T \in Hom_k(V, V)$, and $v \in V$. Then clearly M is isomorphic to the k[H]-module $Hom_k(V, V)$. Furthermore $Hom_k(V, V)$ and $V^* \otimes V$ are isomorphic as k[H]-modules. So by letting $Irr(H) = \{\psi_1, \psi_2, \ldots, \psi_s\}$ and $\chi_H = \sum_{i=1}^s n_i \psi_i$ with nonnegative integers $n_i, i = 1, \ldots s$, we have $\Psi = \sum_{k,l=1,\ldots,s} n_k n_l \overline{\psi_k} \psi_l$ where Ψ is the character of H afforded by M.

Choose a transversal T for Z(P) in P. Then the set $\{D(x)|x \in T\}$ forms a basis for M by a result of Burnside [[2], V.5.14] and the fact that $D(zx) = \lambda(z)D(x)$ for any $x \in T$ and $z \in Z(P)$. Notice that P/Z(P) is the union of one H-orbit of length 1 and $d = \frac{p^{2m}-1}{|H|}$ orbits of length |H|. Thus we have $M = \langle I \rangle \oplus M_1 \oplus \cdots \oplus M_d$ with $M_i \cong k[H]$ as H-module for any $i = 1, 2, \ldots, d$. So we get

$$\Psi = 1_{H} + \sum_{i=1}^{s} \frac{p^{2m} - 1}{|H|} \psi_{i}(1) \psi_{i} = \sum_{k,l=1}^{s} n_{k} n_{l} \overline{\psi_{k}} \psi_{l}.$$

Thus the multiplicity of the principal character $1_{\scriptscriptstyle H}$ in Ψ is

$$[1_{{}_{H}},\Psi]_{{}_{H}}=1+\frac{p^{2m}-1}{|H|}=\underset{k=1}{\overset{s}{\sum}}n_{k}^{2}$$

and the multiplicity of any nonprincipal $\alpha \in Irr(H)$ in Ψ is

$$[\alpha, \Psi]_{H} = \frac{p^{2m} - 1}{|H|} \alpha(1) = \sum_{k,l=1}^{s} n_{k} n_{l}(\psi_{l}, \psi_{k} \alpha).$$

In particular for any nonprincipal linear character γ of H we have

$$\frac{p^{2m}-1}{|H|} = \sum_{\alpha \in Irr(H)} n_{\alpha} n_{\alpha\gamma}$$

This gives

$$1 = \sum_{\alpha \in Irr(H)} n_{\alpha}^2 - \sum_{\alpha \in Irr(H)} n_{\alpha} n_{\alpha\gamma}, \text{ and hence } 2 = \sum_{\alpha \in Irr(H)} (n_{\alpha} - n_{\alpha\gamma})^2$$

for any nonprincipal linear character γ of H.

The group $\widehat{H}/\widehat{H'}$ of characters of the abelian group H/H' is isomorphic to H/H'. In particular it is cyclic. Let ϑ be a generator of $\widehat{H/H'}$. It acts on Irr(H) by multiplication. Let Φ_i , $i = 1, \ldots, b$ be the orbits of ϑ on Irr(H) and let $m_i = |\Phi_i|$. Then we have $2 = \sum_{i=1}^b \sum_{\alpha \in \Phi_i} (n_\alpha - n_{\alpha\vartheta})^2$. So there are exactly two elements β and γ in Irr(H) such that $|n_\beta - n_{\beta\vartheta}| = 1 = |n_\gamma - n_{\gamma\vartheta}|$, and we have $n_\alpha = n_{\alpha\vartheta}$ for any $\alpha \in Irr(H) - \{\beta, \gamma\}$. If $\beta \in \Phi_i$ and $\gamma \notin \Phi_i$, then $n_\beta \neq n_{\beta\vartheta} = n_{\beta\vartheta^2} = \cdots = n_{\beta\vartheta^{m_i-1}} = n_\beta$, which is not possible. So if necessary by reindexing the orbits, we can assume that β and γ are both elements of Φ_b , and $n_\alpha = n_{\alpha\vartheta}$ for any $i = 1, 2, \ldots, b - 1$ and any $\alpha \in \Phi_i$.

Suppose that $\gamma = \beta \vartheta^u$ for some $u \in \{1, 2, \dots, m_b - 1\}$. We have

$$n_{\beta} \neq n_{\beta\vartheta} = \dots = n_{\beta\vartheta^u} \neq n_{\beta\vartheta^{u+1}} = \dots = n_{\beta\vartheta^{m_b-1}} = n_{\beta}.$$

Since each Φ_i is either a ϑ^2 -orbit or the union of two ϑ^2 -orbits of the same size we get

$$2 = \sum_{i=1}^{b} \sum_{\alpha \in \Phi_i} (n_\alpha - n_{\alpha\vartheta^2})^2 = \sum_{\alpha \in \Phi_b} (n_\alpha - n_{\alpha\vartheta^2})^2.$$

So the differences $n_{\beta} - n_{\beta\vartheta^2}, n_{\beta\vartheta^{m_b-1}} - n_{\beta\vartheta}, n_{\gamma} - n_{\gamma\vartheta^2}$ are all nonzero if $u \in \{2, \ldots, m_b - 2\}$, which is a contradiction. If necessary by replacing ϑ by ϑ^{-1} we can assume that $n_{\beta} \neq n_{\beta\vartheta} \neq n_{\beta\vartheta^2} = \cdots = n_{\beta\vartheta^{m_b-1}} = n_{\beta}$. We let $n_{\beta\vartheta} = n_{\beta} + \delta$, with some $\delta \in \{-1, 1\}$. Choose an element α_i from $\Phi_i, i = 1, 2, \ldots, b-1$, and let $\alpha_b = \beta$. Then

$$\chi_{\mu} = \sum_{i=1}^{b} n_{\alpha_{i}} (\alpha_{i} + \alpha_{i}\vartheta + \cdots + \alpha_{i}\vartheta^{m_{i}-1}) + \delta\mu, \text{ where } \mu = \alpha_{b}\vartheta.$$

By [[2], V.17.13] we have

$$\chi_{H'} = \frac{p^m - \delta'}{|H'|} \rho' + \delta' \mu' = \left(\sum_{i=1}^b n_{\alpha_i} m_i \alpha_i\right)_{H'} + \delta \alpha_{b_{H'}}$$

for some $\delta' \in \{-1, 1\}$ and $\mu' \in Irr(H')$ where ρ' is the regular character of H'.

It follows by [[4], Exercise 6.2] that if $i \neq j$ then the sets of irreducible constituents of the restrictions of α_i and α_j are disjoint. By Clifford's theorem we have

$$\alpha_{iH'} = e_i \sum_{j=1}^{t_i} \lambda_{i,j} \text{ where } I_H(\lambda_{i,1}) = T_i, \ t_i = [H:T_i], \ H = \bigcup_{j=1}^{t_i} T_i x_{i,j}, \text{ and } \lambda_{i,j} = \lambda_{i,1}^{x_{i,j}}, j = 1, 2, \dots, t_i; i = 1, 2, \dots, b. \text{ Now } \{\lambda_{i,j} | j = 1, 2, \dots, t_i; i = 1, 2, \dots, b\} = Irr(H').$$

It is known that there is a unique $\xi_i \in Irr(T_i)$ such that $\xi_i^H = \alpha_i$ and $\xi_{i_{H'}} = e_i \lambda_{i,1}$. On the other hand as T_i/H' is cyclic, $\lambda_{i,1}$ has an extension, say φ , to T_i . But then φ^H must belong to the ϑ -orbit containing α_i which implies $\alpha_{i_{H'}} = (\varphi^H)_{H'}$. Therefore we have

$$e_i = [\alpha_{i_{H'}}, \lambda_{i,1}] = [(\varphi^H)_{H'}, \lambda_{i,1}] = [\varphi_{H'}, \lambda_{i,1}] = 1$$
 for any $i = 1, 2, \dots, b$.
Let now $e = \frac{p^m - \delta'}{|H'|}$ and $\mu' = \lambda_{i_0, j_0}$. Then for any $v \in \widehat{H'}$ we have

$$\left[\chi_{{}_{H'}}, \upsilon\right]_{{}_{H'}} = \left\{ \begin{array}{rrr} e & \mathrm{if} & \upsilon \neq \mu' \\ e + \delta' & \mathrm{if} & \upsilon = \mu' \end{array} \right.$$

Set $H_0 = F(H)$. Applying [[2], V.17.13] to the action of PH_0 on V we see in particular that $|H_0|$ divides $p^m - \delta^*$ for some $\delta^* \in \{-1, 1\}$. Then |H'| divides $\delta - \delta^* = (p^m - \delta^*) - (p^m - \delta)$ and so we have either $\delta = \delta^*$ or |H'| = 2. If the latter holds then $H' \leq Z(H)$ and hence H is abelian, which is not the case. Thus $|H_0/H'|$ divides e. In particular e > 1 and so $e + \delta' > 0$ which shows that $[\chi_H, \alpha_{i_0}]_H \neq 0$.

If $t_{i_0} \neq 1$, then there exists $j_1 \neq j_0$ such that

$$e = [\chi_{_{H'}}, \lambda_{i_0, j_1}]_{_{H'}} = [\chi_{_{H'}}, \lambda_{i_0, j_0}]_{_{H'}} = e + \delta'$$

which is not possible. Then $t_{i_0} = 1$ and hence μ' is *H*-invariant. This yields that $\alpha_{i_0}{}_{H'} = \mu' = \lambda_{i_0,1}$. In particular α_{i_0} is a linear character of *H* and so $m_{i_0} = |H/H'|$.

Furthermore we have

$$e + \delta' = \begin{cases} n_{\alpha_{i_0}} m_{i_0} & \text{if } i_0 < b \\ n_{\alpha_b} m_b + \delta & \text{if } i_0 = b \end{cases}$$

Now $|H_0/H'|$ divides the greatest common divisor of e and m_{i_0} which forces that $i_0 = b$ as H_0/H' is nontrivial. Furthermore if $\delta \neq \delta'$ we have $|H_0/H'| = 2$, which implies by Lemma 2.1 that H/H' is a 2-group. This contradiction shows that $\delta = \delta'$ and hence $n_{\alpha_b}m_b = e$ by the above formula. In particular $\frac{p^m - \delta}{|H|} = n_{\alpha_b}$ is an integer. On the other hand we also have $e = [\chi_{H'}, \lambda_{i,1}]_{H'} = n_{\alpha_i}m_i$ if i < b.

Set next $r_i = |T_i/H'|$. As $\widehat{T_i/H'} = \langle \vartheta|_{T_i} \rangle$ we obtain $T_i \leq Ker \vartheta^{r_i}$. As $\alpha_i = \xi_i^H$ for some ξ_i of T_i and T_i is normal in H, we observe that $\alpha_i(x) = 0$ for any $x \notin T_i$. Combining these two observations we get $\vartheta^{r_i}\alpha_i = \alpha_i$. Thus m_i divides r_i and hence $|H/H'| = r_i t_i = m_i c_i t_i$ for some positive integer c_i . It follows now that $n_{\alpha_i} m_i c_i t_i = ec_i \alpha_i(1)$ and hence $n_{\alpha_i} = \frac{p^m - \delta}{|H|} c_i \alpha_i(1) \geq \frac{p^m - \delta}{|H|} \alpha_i(1)$. Thus $\frac{p^m - \delta}{|H|} \rho + \delta \mu$ occurs in χ_H . As the degrees of these characters are the same we see that they are equal. This completes the proof of the theorem. \Box

The next example shows that the hypothesis about the structure of H can not be avoided.

Example. Let V be the GF(3)-space $GF(3^4)$. We define the map $(\cdot|\cdot): V \times V \longrightarrow GF(3)$ by $(\cdot|\cdot)(x, y) = Tr(d \cdot (xy^9 - x^9y))$ for $x, y \in V$, where d is an element of order 16 in $GF(3^4)^*$. One can check that $(\cdot|\cdot)$ is a nonsingular symplectic form on V.

Let $b \in GF(3^4)^*$ be an element of order 5 and $c \in GF(3^4)^*$ be an element of order 4. We define $\tau_b : V \longrightarrow V$ by $\tau_b(x) = b \cdot x$ and $\sigma : V \longrightarrow V$ by $\sigma(x) = c \cdot x^9$. Then $H = \langle \tau_b, \sigma \rangle$ is a subgroup of GL(4,3) preserving the symplectic form, with $|H| = 20, H' = \langle \tau_b \rangle$ of order 5, and $F(H) = H' \times \langle \sigma^2 \rangle$ of order 10. Furthermore h(v) = v for some $0 \neq v \in V$ and $h \in H$ implies that h = 1. So if P is the extraspecial group of order 3^5 and exponent 3, then it admits H as a subgroup of automorphisms of P, centralizing Z(P) and satisfying [P, h] = P for any nonidentity element $h \in H$. Let χ be any irreducible character of the group PHwhich does not contain Z(P) in its kernel. Clearly, we have $\chi_H \neq \frac{3^2 - \delta}{|H|} \rho + \delta \mu$ for the regular *H*-character ρ and any $\delta \in \{-1, 1\}$ and $\mu \in Irr(H)$, because $\frac{3^2 - \delta}{|H|}$ is not an integer.

2. Action of a Frobenius-like group

We define a slight generalization of Frobenius groups which we call Frobeniuslike groups and prove the main result of this paper.

Definition 2.1. Let F and H be nontrivial finite groups such that H acts on F via automorphisms. Assume that F is nilpotent and [F,h] = F for all nonidentity elements $h \in H$. We call the semidirect product FH a "Frobenius-like group" with kernel F and complement H.

Lemma 2.2. Let FH be a group with $F \triangleleft FH$, and [F,h] = F for all nonidentity elements $h \in H$. Let FH act on the set X. If F acts nontrivially on X then H acts faithfully on X.

Proof. Let K denote the kernel of FH on X. If $K \cap H \neq 1$ then we have

$$F = [F, K \cap H] \le K.$$

This contradiction proves the claim. \Box

Theorem A. Let V be a nonzero vector space over an algebraically closed field k and let FH be a Frobenius-like group of odd order acting on V as a group of linear transformations such that char(k) does not divide the order of H. Then V_H has a proper H-regular direct summand if one of the following holds:

 $(i) C_V(F) = 0,$

(ii) $[V, F] \neq 0$ and char(k) does not divide the order of F.

Proof. Assume that the theorem is false and choose a counter-example with minimum dimV + |FH|. We shall proceed in several steps.

(1) We may assume that char(k) does not divide the order of F and F is a q-group for some prime q with $C_V(F) = 0$.

Set char(k) = p. As F is nilpotent, we have $F = F_p \times F_{p'}$. If (i) holds then $C_V(F_{p'}) = 0$. Notice also that $[F_{p'}, h] = F_{p'}$ for every nonidentity element $h \in H$. So by an induction argument applied to the action of $F_{p'}H$ on V we see that F is a p'-group.

Let now q be a prime dividing the order of F such that $[V, F_q] \neq 0$. As the action of $F_q H$ on $[V, F_q]$ satisfies the hypothesis of the theorem it follows by induction that $V = [V, F_q]$ and $F = F_q$.

(2) The group FH acts irreducibly and faithfully on V.

Let U be an irreducible FH submodule of V. Note that $C_U(F) \subseteq C_V(F) = 0$. It follows now by induction that U has a proper H-regular direct summand and hence so does V. Therefore V is an irreducible FH-module as claimed.

Notice next that $C_{FH}(V) = C_F(V)C_H(V)$. As a consequence of Lemma 2.2 we have $C_H(V) = 1$. Now an induction argument applied to the action of $(F/C_F(V))H$ on V yields that $C_F(V) = 1$ which completes the proof of the claim.

(3) V_F is homogeneous and hence F is nonabelian.

By Clifford's theorem the module V is a direct sum of homogeneous Fmodules permuted transitively by H. We pick now an F-homogeneous component W of V and set $H_1 = Stab_H(W)$. If $H_1 = 1$, then V is free as a kH-module obviously. Thus we may assume that $H_1 \neq 1$. Applying induction to the action of FH_1 on W we conclude that W has a proper H_1 -regular direct summand and hence V has a proper H-regular direct summand, as desired. This forces now that $H_1 = H$, that is, V_F is homogeneous.

Assume next that F is abelian. Then F acts by scalars on V and so we have F = [F, h] = 1 for every $h \in H$ which is not the case. Therefore F is a nonabelian group as claimed.

(4) V_F is irreducible.

By (3), $V \cong X \oplus \cdots \oplus X$ for some irreducible kF-module X. Note also that for every $h \in H V^h = V$ and hence X^h and X are isomorphic as kF-modules. As H acts coprimely on F, Corollary 8.16 in [4] yields that the module X can be extended to an FH-module Y in a unique way subject to the condition that if $x \in H$ then $det_Y(x) = 1$. Then by Corollary 6.17 in [4] there is a k(FH/F)module U where $V \cong Y \otimes U$. It should be noted that H acts faithfully on Y by Lemma 2.2. An induction argument applied to the action of the group (F/Ker(FonY))H on Y shows that F acts faithfully on Y and also $dim_k V = dim_k Y$. Thus $dim_k U = 1$ and hence $X = V_F$ establishing the claim.

(5) V_M is homogeneous for every maximal FH-invariant subgroup M of F.

Pick a maximal FH-invariant subgroup M of F. Then F/M is an elementary abelian group on which H acts irreducibly. Furthermore, the group (F/M)His Frobenius as $C_{F/M}(h) = 1$ for every nonidentity element $h \in H$. By (4), V_F is irreducible. By Clifford's theorem there is a collection $\{U_1, \ldots, U_s\}$ of homogeneous M-modules permuted transitively by F such that $V_M = \bigoplus_{i=1}^s U_i$. On the other hand $M \triangleleft FH$ and the components U_1, \ldots, U_s are permuted transitively also by FH. Then by setting $F_0 = Stab_F(U_1)$, we see that s = $|F:F_0| = |FH: Stab_{FH}(U_1)|$. It follows now that $s = \frac{|F||H|}{|Stab_{FH}(U_1)|} = \frac{|F|}{|F_0|}$ whence

 $|Stab_{FH}(U_1)| = |F_0||H|$. As $(|F_0|, |Stab_{FH}(U_1)/F_0|) = 1$, a complement H_0 of F_0 in $Stab_{FH}(U_1)$ exists. Therefore without loss of generality we may assume that $H \leq Stab_{FH}(U_1)$, that is, $Stab_{FH}(U_1) = F_0H$.

On the other hand, F_0/M is either trivial or equal to F/M due to the irreducible action of H on F/M. If trivial, then F/M acts regularly on $\{U_1, \ldots, U_s\}$. So for all $i = 1, \ldots, s$, there is a unique $\bar{x}_i \in F/M$ such that $U_i = U_1^{\bar{x}_i}$. Then we have $U_1^{\bar{x}_i h} = U_1^{\bar{x}_i^h}$ for all $h \in H$. This means that H acts regularly on $\{U_2, \ldots, U_s\}$ and hence for any $0 \neq w \in U_2$, the set $\{w^h | h \in H\}$ forms a basis for a free kH-module. Thus we may assume that $F_0 = F$. In particular U_1 is FH-invariant and hence V_M is homogeneous as claimed.

(6) V_S is homogeneous for every FH-invariant subgroup S of F.

Let S be an FH-invariant subgroup of F. Now by (4) V_F is irreducible. Then, by Clifford's theorem we have $V_S = \bigoplus_{i=1}^{s} U_i$ for a collection of Shomogeneous modules $\{U_1, \ldots, U_s\}$ permuted transitively by F. On the other hand $S \triangleleft FH$ and the components U_1, \ldots, U_s are permuted transitively also by FH. We set now $F_0 = Stab_F(U_1)$. Then $s = |F : F_0| = |FH : Stab_{FH}(U_1)|$ and hence we may assume by a similar argument as in the proof of claim (5) that H stabilizes U_1 . If $s \neq 1$, F_0 is contained in a maximal subgroup, say K, of F. However, every maximal subgroup and hence K is normal in F as F is nilpotent. In fact F_0 is H-invariant and hence $F_0 \leq \bigcap_{h \in H} K^h \triangleleft FH$. Now $\bigcap_{h \in H} K^h$ is contained in a maximal FH-invariant subgroup, say M, of F. It follows then by (5) that V_M is homogeneous, that is, $V \cong X \oplus \cdots \oplus X$ for some irreducible M-module X. We consider the decomposition of X into its S-homogeneous components; more precisely we have $X_S = Y_1 \oplus \cdots \oplus Y_r$ for S-homogeneous modules Y_1, \ldots, Y_r by Clifford's theorem. Clearly r = s and $Y_i = X \cap Y$ for each $i = 1, \ldots, s$. Since M acts transitively on the set $\{Y_1, \ldots, Y_s\}$, its action on the set $\{U_1, \ldots, U_s\}$ has to be transitive also. So $|M : Stab_M(U_1)| = s = |F : F_0|$. As $F_0 \leq M$ we have the equality F = M, which is a contradiction. Therefore s = 1, that is, V_S is homogeneous as claimed.

(7) F is extraspecial such that $Z(F) \leq Z(FH)$, and the theorem follows.

Pick a characteristic abelian subgroup S of F. By the above claim V_S is homogeneous and hence S is cyclic. Applying [[2], page 360, Aufgabe 33] to the action of H on F we see that the group F is either cyclic or extraspecial. Recall that F is nonabelian by (3). Then the group F is extraspecial as desired. As $V_{Z(F)}$ is homogeneous we also see that $Z(F) \leq Z(FH)$. Now Theorem B applied to the group FH on V shows that V_H contains the regular kH-module. This completes the proof of the theorem. \Box

Remark. Notice that if FH is not of odd order, then the theorem above is not true due to the following observation:

For a prime p, let F be an extraspecial group of order p^{2m+1} and H be the cyclic group of order $p^m + 1$. There is a regular action of H on $F/\Phi(F)$ so that $[\Phi(F), H] = 1$. Therefore FH is Frobenius-like. By [[2], V.17.13] there exists an irreducible and faithful kFH-module V over an algebraically closed field of characteristic coprime to the order of FH such that $V_H \oplus U \cong kH$ where U is the irreducible trivial H-module. In particular V does not contain any submodule isomorphic to the regular H-module, more precisely $C_V(H) = 0$.

3. Applications

Corollary C. Let G be a finite solvable group acted on coprimely by a Frobeniuslike group FH of odd order so that $[G, F] \neq 1$. Then $C_G(H) \neq 1$.

Proof. We proceed by induction on the order of G. Then F acts trivially on every proper FH-invariant subgroup of G and hence G is a q-group for some prime q. Theorem A applied to the action of FH on $V = G/\Phi(G)$ gives the result. \Box

Corollary D. Let P be a p-group acted on coprimely by a Frobenius-like group FH of odd order so that [P, F] = P. Then

(i) the nilpotency class of P is at most $2log_p|C_P(H)|$,

(ii) |P| is bounded in terms of |F| and $|C_P(H)|$,

(iii) the rank of P is bounded in terms of |F| and the rank of $C_P(H)$.

Proof. (i) Notice that by theorem the group H fixes a point in each FH-invariant section of P on which F acts nontrivially. Then the proof goes similarly as in the proof of Theorem 1(a) in [6].

(ii) It suffices to bound |P/P'| in the required form since the nilpotency class of P is bounded in terms of $|C_P(H)|$ by (i). We consider now a series

$$P_0 = P' \le P_1 \le P_2 \le \ldots \le P_m = P$$

of FH-invariant normal subgroups of P such that $E_i = P_i/P_{i-1}$ is an irreducible FH-module for each i = 1, ..., m. Due to coprime action of F on P and the fact [P, F] = P we see that $C_{E_i}(F) = 0$. Then Theorem A applied to the action of FH on E_i yields $C_{E_i}(H) \neq 0$ for every i = 1, ..., m. As $\dim E_i \leq |FH|$ we get $|E_i| \leq |C_{E_i}(H)|^{|FH|}$ and hence

$$|P/P'| = \prod_{i=1}^{m} |E_i| \le (\prod_{i=1}^{m} |C_{E_i}(H)|)^{|FH|} = (C_{P/P'}(H))^{|FH|}.$$

That is |P/P'| is bounded in terms of |F| and $|C_P(H)|$ since clearly |H| is bounded in terms of |F|.

(iii) This can be proven in a similar fashion as in [6] with obvious changes that is using Corollary 4.1 instead of Lemma 1.2 in [6]. \Box

Acknowledgement. We are grateful to Professor Evgeny I. Khukhro for his help with this article, and in particular, for drawing our attention to Corollary D(iii).

References

- G. Ercan, İ. Ş. Güloğlu, E. Öğüt, Nilpotent Length of a Finite Solvable Group with a Frobenius Group of Automorphisms, to appear in Comm. Algebra. (2013)
- [2] B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin-New York 1967.
- [3] I. M. Isaacs, Finite Group Theory, Graduate Studies in Mathematics, Volume 92, American Mathematical Society.
- [4] I. M. Isaacs, Character Theory of Finite Groups, Dover Publications, Inc., New York, 1994.
- [5] E. I. Khukhro, Nilpotent length of a finite group admitting a Frobenius group of automorphisms with fixed-point-free kernel, Alg. Logic Vol. 49, no. 6, (2011)
- [6] E. I. Khukhro, Rank and order of a finite group admitting a Frobenius group of automorphisms, Alg. Logic Vol. 52, no. 1, (2013)
- [7] N. Yu. Makarenko; E. I. Khukhro; P. Shumyatski, Fixed points of Frobenius groups of automorphisms. (Russian) Dokl. Akad. Nauk 437 (2011), no. 1, 20–23; translation in Dokl. Math. 83 (2011), no. 2, 152154 20D45
- [8] A. Turull, Supersolvable automorphism groups of solvable groups. Math. Z. 183 (1983) 47-73.